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Summary. This paper presents a new method for handling nonconforming
hexahedral-to-hexahedral interfaces. One or both of the adjacent hexahedral
meshes are locally modified to create a one-to-one mapping between between
the mesh nodes and quadrilaterals at the interface allowing a conforming
mesh to be created. In the finite element method, nonconforming interfaces
are currently handled using constraint conditions such as gap-elements, tied
contacts, or multi-point constraints. By creating a conforming mesh, the need
for constraint conditions is eliminated resulting in a smoother, more precise
numerical solution. The method presented in this paper uses hexahedral dual
operations, including pillowing, sheet extraction, dicing and column collapse
operations, to affect the local mesh modifications. In addition, an extension to
pillowing, called sheet inflation, is introduced to handle the insertion of self-
intersecting and self-touching sheets. The quality of the resultant conforming
hex mesh is high and the increase in number of elements is moderate.

1 Introduction

The finite element method is an indispensable part of the design through anal-
ysis process. Mesh generation is often a key bottleneck preventing broader
use of the finite element method. The method utilized to handle interface
conditions between assembly components often has a dramatic impact on the
quality of the solution. Often two spatially adjacent geometric volumes must
behave as a single component. Ideally, a conforming mesh will be created
between components. A conforming mesh ensures a smooth and accurate in-
terpolation of the solution to the governing equations over the interface, and
also improves solution efficiency by minimizing the number of equations that
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2 M. L. Staten, J. F. Shepherd, and K. Shimada

must be solved. Although conforming meshes are preferable, nonconforming
meshes are regularly encountered for a variety of reasons including:

1. Different engineers created the mesh on the different components.
2. The meshing algorithm used on the model did not honor boundary mesh-

ing constraints [1, 2].
3. Difficulties in generating the mesh required a different mesh topology

on the interfacing surfaces for the two components. For example, during
sweeping [3, 4], one interface surface may be required to be a linking-
surface requiring a mapped mesh, while the other interface surface may
be a source surface allowing a paved mesh.

4. The desired density of elements is different in the two components.

The current state of the art is to artificially constrain the nonconform-
ing meshes with multi-point constraints, tied contacts, gap elements, etc.
[5, 6, 7, 8] to maintain solution continuity across the interface. However,
these methods typically result in solution quality degradation, disjoint so-
lution fields, and/or adverse effects on solution convergence. Thus, these non-
conforming interface conditions should only be used in non-critical regions of
the model. A conforming interface would be preferred whenever possible.

In this paper, we present a new computational method, called mesh match-
ing, which makes nonconforming hexahedral-to-hexahedral interface condi-
tions conforming. This new method locally modifies the topology of the hexa-
hedral elements in one or both of the adjacent hexahedral meshes to create a
one-to-one pairing of nodes and quadrilaterals on the interface surfaces so that
the meshes can be merged into a conforming mesh across the interface. As with
any mesh modification procedure, the quality of the modified elements may be
reduced from the initial mesh quality; however, assuming the element quality
remains above prescribed element quality thresholds, the benefits of having a
conforming mesh may compensate for the reduction in element quality.

This paper is organized as follows: Section 2 reviews existing hexahedral
mesh topology and modification theory used during mesh matching. In Section
3 a new mesh topology operator is defined. In Section 4, the mesh matching
algorithm is presented. In Section 5, two examples of mesh matching are
provided. Finally, in Section 6, we provide some concluding remarks along
with some areas of current and future efforts.

Fig. 1. A hexahedral element has 12 edges organized as 3 sets of 4 parallel edges.
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2 Previous Research - The Hexahedral Mesh Dual

The dual of a hexahedral mesh [9, 10] is an alternate representation of the
mesh composed of sheets and columns of hexahedral elements in the interior
of the mesh, and chords and vertices on the boundary of the mesh.

Dual Sheets and Columns

Figure 1 illustrates how the 12 edges on a hexahedral element can be divided
into three sets of four edges. The four edges in each set are topologically
parallel to each other (i.e. do not share any nodes, but have one or more
common adjacent hexahedra). Given one edge, the other three topologically
parallel edges in each adjacent hexahedra can be identified. From each of these
edges a similar set of topologically parallel edges can be recursively gathered
from each of the adjacent hexahedra extending through the mesh. Thus, a dual
sheet, Si, can be defined as a set of topologically parallel edges. Alternatively,
Si can also be defined as the set of hexahedral elements traversed to build
this set of edges. Figure 2b shows a single dual sheet uniquely defined by
traversing starting from edge A in Figure 2a. A dual sheet is self-intersecting
if any hexahedron in the sheet has more than one of its three edge sets in the
definition of the sheet (Figure 2c). A dual sheet is self-touching if two or more
edges defining the sheet use the same mesh node (Figure 9d and Figure 10c).

A hexahedral element contains six quadrilateral faces, grouped into three
pairs of topologically opposite quadrilaterals. From a single quadrilateral, a
column of hexahedra is defined by traversing adjacent hexahedra through their
topologically opposite quadrilaterals. Thus a dual column, Ci, is defined as
the set of topologically opposite quadrilaterals of adjacent hexahedra. Alter-
natively, Ci is defined as the set of hexahedral elements traversed to locate
this set of quadrilaterals. Figure 3b illustrates the dual column defined by
quadrilateral face A specified in Figure 3a. An important link between sheets
and columns is that a column defines the intersection of two sheets (Figure
3c). A column is self-intersecting if any hexahedron in the column has more
than one of its quadrilateral pairs in the definition of the column (Figure 3d).

Fig. 2. Hexahedral Dual Sheets: (a) A simple mesh with two edges, A and B,
identified. (b) The dual sheet uniquely identified by edge A. (c) A self-intersecting
sheet identified by edge B.
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Fig. 3. Hexahedral Dual Columns: (a) Hex mesh with highlighted quadrilateral
A. (b) The column of hexahedra defined by quadrilateral A. (c) The sheets which
intersect to form the column in (b). (d) A self-intersecting column.

Dual on the Boundary of a Hexahedral Mesh

The boundary of a mesh is the set of quadrilaterals which have exactly one
adjacent hexahedron. These quadrilaterals can be grouped based on their
associated geometric surface. Quadrilateral meshes have a dual representation
of dual chords and vertices. The four edges on a quadrilateral are grouped into
two pairs of topologically opposite edges. A dual chord is uniquely defined
starting from a single edge and traversing adjacent quadrilaterals through
opposite edges (Figure 4). This process is repeated until every edge in the
quadrilateral mesh has been associated with a dual chord. Thus, a dual chord,
ci, can be defined as a set of the topologically opposite edges. Alternatively,
ci can also be defined as the quadrilaterals that were traversed to build this
set of edges. Finally, a dual chord ci can also be defined as the collection
of line segments connecting the centroids (dual vertices, vi) of this set of
quadrilaterals. A dual chord is self-intersecting if any quadrilateral in the chord
has all four of its edges in the definition of the chord. Associated with each
dual chord, ci, is the dual sheet, Si, defined by traversing topologically parallel
edges from any edges in ci. Likewise, associated with each dual vertex, vi, is
a dual column, Ci, defined by traversing topologically opposite quadrilaterals
from the quadrilateral associated with vi.

2.1 Dual Topological Operators

The matching procedure described in Section 4 performs a series of topolog-
ical operations on hexahedral dual sheets and columns. Sheet extraction [11]
removes a dual sheet by collapsing all edges that define it, reducing it to a
continuous set of quadrilateral faces (Figure 5). Any sheet topology, including
self-intersecting and self-touching sheets, can be extracted. Sheet extraction
is not always possible due to geometric nodal associativity. That is, when col-
lapsing the edges that define a sheet, the two nodes on each edge are merged.
If two edge nodes have conflicting geometric associativities, the edge cannot
be collapsed. However, the sheet can be extracted if preceded by a sheet in-
sertion to add sufficient mesh topology. In addition, low node valency in the
region of the sheet extraction can sometimes lead to doublets [12], resulting
in ill-shaped elements with zero of negative scaled Jacobians [13].
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Fig. 4. Boundary quad meshes and their dual: (a) A hexahedral mesh. (b) One
boundary surface mesh. (c) A single dual chord. (d) The complete surface dual.

Fig. 5. Hexahedral sheet extraction: (a) A hexahedral mesh with one dual sheet.
(b) The edges are collapsed to extract the sheet. (c) The sheet is extracted. (d) The
sheet becomes a continuous set of quadrilaterals.

Pillowing [10, 12, 14] is a method of inserting new dual sheets into a mesh.
Pillowing is performed by identifying a set of hexahedral elements as the
shrink set (Figure 6a). The hexahedra in the shrink set are separated from
the remainder of the mesh by a ‘shrink’ distance, allowing the placement of
a new sheet between the shrink set and the other hexahedra in the mesh
(Figures 6b and 6c). The new sheet is always non-self-intersecting and non-
self-touching. In contrast to sheet extraction, pillowing is always possible given
a well-defined shrink set. Since its introduction by Mitchell [12], it has been
applied in many mesh modification procedures [10, 15, 16, 17, 18].

Dicing [19] is another method of inserting dual sheets into a mesh. Dicing
is performed by splitting the edges that define the sheet. Dicing can insert
multiple sheets at once by splitting each edge multiple times (Figure 7). The
new sheets inserted with dicing are duplicates of the input sheet; if the input
sheet is self-intersecting, the new sheets will be also. The disadvantage of
dicing is that it can only copy existing sheets; it cannot create new sheets
that did not already exist in the mesh. In addition, dicing cannot create self-
touching sheets.

The column collapse operation is also an important dual operation (Figure
8). A column is collapsed by merging one pair of opposite nodes of each quadri-
lateral defining the column. As described in Section 2, a dual column defines
the intersection of two dual sheets. This intersection is removed by collapsing
the column. In addition, the paths of the two sheets is altered. Collapsing
self-intersecting columns creates doublets [12] and should be avoided.
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Fig. 6. Pillowing: (a) A hexahedral mesh with a shrink set of five hex elements
identified. (b) A pillow is inserted. (c) The pillow sheet.

Fig. 7. Dicing: (a) A hexahedral mesh with one dual sheet indicated. (b) The sheet
is diced into three sheets.

Fig. 8. Column collapse: (a) A hexahedral mesh with one dual column indicated.
(b) The sheets that intersect to define the column drawn separate from the mesh.
(c) Opposite nodes are merged to collapse the column. (d) The sheets defining the
column no longer intersect. (e) The entire mesh after the column collapse.

3 Sheet Inflation - Generalized Sheet Insertion

The mesh matching algorithm presented in Section 4 requires the ability to in-
sert any kind of sheet including both self-intersecting and self-touching sheets.
Previous research allows the insertion of sheets through pillowing and dic-
ing. However, neither pillowing nor dicing can insert self-touching sheets, and
pillowing is unable to insert self-intersecting sheets. Dicing can insert self-
intersecting sheets, but only if an existing self-intersecting sheet exists in the
correct location of the mesh. Hence, a sheet insertion operator which inserts
both self-intersecting and self-touching sheets is required.

Sheet inflation can be thought of as the reverse of sheet extraction. In
sheet extraction, a dual sheet is reduced to a continuous set of quadrilaterals.
This process can be reversed by inflating the quadrilaterals to re-introduce the
extracted sheet. Knupp [14] introduced a similar operator with the inflate hex
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ring which inflates a set of quadrilaterals into a new dual column. For sheet
inflation, the boundary of the quadrilateral set must lie on the boundary of
the hex mesh. Self-intersecting and self-touching sheets are inserted by inflat-
ing quadrilateral sets with non-manifold edges. A set of non-manifold edges
with four adjacent quadrilaterals (i.e. 4NMEsets) can be inflated as either
a self-intersecting (Figure 9c) or a self-touching sheet (9d). A a set of non-
manifold edges with three adjacent adjacent quadrilaterals (i.e. 3NMEsets)
can be inflated as either self-touching (Figure 10c), or self-touching and self-
intersecting (Figure 10d). Thus each non-manifold edge set can be inflated in
two different ways. The input to sheet inflation requires each non-manifold
edge set have a flag indicating which option should be performed. 3NMEsets
must appear in the quadrilateral set in pairs, or be paired with a boundary.

Fig. 9. Sheet inflation example #1: (a) A simple hex mesh with boundary edges indi-
cated. (b) A non-manifold continuous set of quadrilaterals bounded by the indicated
boundary edges in (a). The highlighted edges form a 4NMEset. (c) A self-intersecting
sheet inflation option. (d) A self-touching sheet inflation option.

Fig. 10. Sheet inflation example #2: (a) A simple hex mesh with boundary edges
indicated. (b) A non-manifold continuous set of quadrilaterals bounded by the in-
dicated boundary edges in (a). The highlighted edges form two 3NMEsets. (c) A
self-touching sheet inflation option. (d) A self-touching and self-intersecting sheet
inflation option.

For manifold sets of quadrilaterals, sheet inflation is the same as pillowing
the hexahedra on one side of the quadrilaterals set. Thus, sheet inflation can
be implemented in a manner similar to pillowing, with the following three
differences caused by the non-manifold edge sets:

1. Multiple shrink sets are required, partitioned from each other by the non-
manifold edge sets.
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2. Nodes along non-manifold edge sets must be duplicated either twice for
self-touching sheets, or three times for self-intersecting sheets.

3. Quadrilaterals which lie between two 3NMEsets must be duplicated twice,
and the resulting gap is filled with two hexahedra instead of one.

4 Hexahedral Mesh Matching

4.1 Mesh Matching Input Requirements

The input requirements of the mesh matching algorithm are:

1. Two geometric surfaces, A and B, that are:
a) Topologically identical (The number of boundary curves, loops, and

vertices defining the two surfaces must be the same),
b) Geometrically similar (each boundary curve/vertex on Surface A must

have a corresponding boundary curve/vertex on Surface B that is
within a tolerance, β), and

c) Both adjacent to hexahedral mesh elements (could be different sur-
faces on a single conforming mesh, or surfaces on separate meshes).

2. An integer value for a depth parameter indicating how many layers into
the adjacent hexahedral meshes the modifications can propagate.

3. A flag indicating which (or both) of the surfaces can have their mesh
topology modified. The simplest case is that both meshes can be modified,
but all changes can be done on one side of the interface if necessary.

If input requirement 1a or 1b are not met by the initial hexahedral meshes,
the Graft Tool [18] can be used to imprint the boundaries of the interface
surfaces onto each other.

4.2 Mesh Matching Procedure

Figure 11a illustrates a two-volume model positioned such that Surface A on
Volume A overlaps exactly with Surface B on Volume B meeting the input
requirements in Section 4.1. However, as seen in Figures 11b and 11c, the
quadrilateral meshes on Surfaces A and B do not match. In this case, the
nonconforming mesh was created because the topology of Volume B requires
Surface B to be a linking surface for sweeping, while the topology of Volume
A requires Surface A to be a source surface for sweeping. The resulting mesh
is nonconforming as shown in Figure 11d and 11e. The objective is to modify
the mesh topology of one or both of the adjacent hexahedral meshes such
that the quadrilateral meshes on Surfaces A and B match, node-for-node and
quad-for-quad. The node pairs can then be merged resulting in a conforming
mesh across the interface.

We make the following assertion:
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Fig. 11. Nonconforming mesh example: (a) Geometric model composed to two
volumes, A and B. (b) The mesh on Volume A. (c) The mesh on Volume B. (d)
The complete mesh showing the discontinuity in the mesh. (e) Zoom-in of mesh
discontinuity.

Assertion 1: Given two geometric surfaces, A and B, which meet the
input requirements stated in Section 4.1, the topology of the two adjacent hex-
ahedral meshes can always be modified to create identical quadrilateral mesh
topology on both Surfaces A and B, which can then be merged to create a
conforming hexahedral mesh across the interface.

Rationale: Two quadrilateral meshes will be topologically identical iff
the duals of the two quadrilateral meshes are identical. LetΩcA andΩcB be the
sets of chords, ci, in the quadrilateral meshes on Surfaces A and B respectively.
Initially ΩcA 6= ΩcB . However, through sheet insertion and extraction, dual
chords can be inserted and extracted from boundary quadrilateral meshes.
Thus, one or both of ΩcA and ΩcB can be modified such that they do match.
The algorithm of mesh matching is then:

1. For each ci ∈ ΩcA:
a) Search for a cj ∈ ΩcB such that cj = ci within a tolerance, δ. If an

equal cj is found, insert ci and cj into Ωc−pairs, else, insert ci into
ΩcA−unmatched.

2. For each cj ∈ ΩcB :
a) If cj /∈ Ωc−pairs insert cj into ΩcB−unmatched.
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3. For each ci ∈ ΩcA−unmatched:
a) Use the following rules to determine if ci should be inserted into ΩcB

or extracted from ΩcA:
i. No ci should be extracted if doing so violates geometric associa-

tivity (see Section 2.1).
ii. No ci should be extracted if doing so creates doublet topology.

iii. Sheet insertions should be done if mesh density has already been
decreased bordering upon acceptability thresholds.

iv. Sheet extractions should be done if mesh density has already been
increased bordering upon acceptability thresholds.

v. If insertion is done:
A. Project ci onto Surface B, and find a continuous set of mesh

edges, EB , on Surface B which approximate this projection.
B. Use dicing if ∃ cj ∈ ΩcB such that cj = EB with a tolerance,

γ, where γ >> δ.
C. Use pillowing if a well-connected shrink set can be defined

behind the quadrilaterals on one side of EB .
D. Otherwise, use sheet inflation on a continuous quadrilateral

set which contains EB on its boundary.
vi. If extraction is done, consider doing a column collapse (see exam-

ple 1 in Section 5.1) in order to avoid global changes.
b) If ci is to be extracted, remove ci from ΩcA and ΩcA−unmatched

c) If ci is to be inserted, remove ci from ΩcA−unmatched, and insert it
along with the newly inserted chord into Ωc−pairs.

4. Repeat Step 3 for each cj ∈ ΩcB−unmatched

5. Smooth all nodes local to the interface surface modifications to improve
element quality [21].

The Chord Equals Operator

In order to perform Step 1a and Step 3avB, ci = cj must be defined:

Definition 1. ci = cj, within a tolerance, δ, iff the maximum distance between
ci and all vk in cj is less than δ AND the maximum distance between cj and
all vk in ci is also less than δ.

ci = cj does not require ci and cj to have the same number of dual vertices.
Rather, ci = cj if the two chords are spatially close to each other. For example,
in Figure 12 the two indicated chords have 16 and 15 chord vertices. However,
when the two surfaces are overlaid, the maximum distance between the two
chords is less than δ. Thus, these two chords are equal.

In short, mesh matching implements Shepherd’s [20] 2nd assertion which
states: There exists a transformation that converts one set of fundamental
sheets into an alternative set of fundamental sheets. This assertion can be
generalized as follows:



Mesh Matching - Creating Conforming Hex Interfaces 11

Fig. 12. The mesh topology of example Surfaces A and B. Although the indicated
chords have different number of dual vertices, they are still spatially within δ when
overlaid.

Assertion 2: There exists a transformation that converts one hexahedral
mesh into any other hexahedral mesh on a given geometry.

Rationale: Any sheet can be extracted from a mesh. If geometric associa-
tivity would be violated by sheet extraction, the sheet can be extracted after a
sheet insertion to adequately add the appropriate mesh topology. In addition,
any sheet can be inserted, including self-touching and self-intersecting sheets.
Thus any sheet not matching the goal topology can be extracted, and any
missing sheet can be inserted. In the case of mesh matching, the hexahedral
mesh to convert to is a mesh which matches across the interface.

5 Examples

5.1 Simple Example

We now illustrate mesh matching on the simple example from Figure 11.
Figure 13a identifies a chord, ci, in Surface A, which has no pair in Surface B.
In Figure 13b, a string of edges, EB , on Surface B is identified which roughly
matches the projection of ci. EB partitions the surface quadrilaterals into two
sets, of which, one is chosen (normally the smaller set). A pillow shrink set is
then defined as the hexahedral elements behind the chosen quadrilateral set.
The input depth parameter is used to determine how far into the volume to
propagate to build the shrink set. Figures 13c and 13d show the mesh after the
pillow is inserted using depth=2, followed by appropriate smoothing [21]. The
resulting new chord in Surface B is then paired with the identified unpaired
chord in Figure 13a. Figure 14 repeats this process for another unpaired chord
in Surface A.

Figure 15 illustrates the use of dicing to introduce topology required for
mesh matching. In Figure 15a, three topologically parallel chords are indi-
cated. One of these three chords is paired with the chord indicated in Figure
15b, which is diced, followed by smoothing, introducing the required topology
to match all three chords. After these three operations, the topology on the
left side of Surface B is beginning to match the topology on the left side of Sur-
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face A. Additional sheets are inserted and extracted until the mesh topology
on these two surfaces matches.

Fig. 13. Pillowing during mesh matching: (a) The mesh topology on Surface A
with one non-paired chord, ci, indicated. (b) The mesh topology on Surface B with
a string of mesh edges, EB , indicating where pillowing will be performed. (c) Surface
B after pillowing is performed. (d) Volume B after pillowing is performed.

Fig. 14. Pillowing during mesh matching: (a) The mesh topology on Surface A
with one non-paired chord, ci, indicated. (b) The mesh topology on Surface B with
a string of mesh edges, EB , indicating where the 2nd pillow will be inserted. (c)
Surface B after pillowing is performed. (d) Volume B after pillowing is performed.

Sheet Extraction for Mesh Matching

Although all required topology can be introduced with sheet insertion, doing
so will have the potentially undesirable side-effect of increasing the density of
the mesh local to the interface surfaces. Sheet extraction is useful in reducing
or eliminating the increase in mesh density. For example, Figure 16a shows the
mesh topology on Surface A with one unpaired chord indicated. Figure 16b
shows the mesh topology of Surface B; clearly the chord indicated in Figure
16a has no match in Surface B. Figure 16c shows the mesh in Volume A.
The indicated sheet is extracted from the mesh as shown in Figure 16d which
removes the unpaired chord in 16a from Surface A as shown in Figure 16e.

One potentially undesirable side-effect of sheet extraction is that the entire
sheet must be extracted in order to maintain a conforming all-hexahedral
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Fig. 15. Dicing during mesh matching: (a) The mesh topology on Surface A with
three chords indicated. (b) The mesh topology on Surface B with a single chord
to be diced indicated. (c) Surface B after dicing is performed. (d) Volume B after
dicing is performed.

Fig. 16. Sheet extraction during mesh matching: (a) The mesh topology on Surface
A with one unpaired chords indicated. (b) The mesh topology on Surface B. (c)
Volume A with the sheet extending from the chord indicated in (a) highlighted. (d)
Volume A after indicated sheet is extracted. (e) Surface A the sheet is extracted.

mesh. Figure 16c clearly shows that the sheet to be extracted extends far
away from the interface surfaces, resulting in a global change. However, the
changes can be kept local to the region around Surface A if we first perform
a column collapse operation (see Section 2.1). For example, in Figure 17a one
additional sheet, which remains local to the interface surfaces, is identified. If
such a local sheet does not exist in the mesh, one can be inserted by pillowing
a few layers of hexahedra away from the interface surfaces. As described in
Section 2, the two sheets indicated in Figure 17a intersect in a column of
hexahedra. By collapsing this column, we redirect the sheet to extract in such
a way that it now remains local to the interface surfaces as illustrated in Figure
17b. The extraction sheet can then be extracted as illustrated in Figure 17c
keeping all changes local to the interface surfaces.

The pillow, sheet inflation, sheet extraction, dicing and column collapse
operations can be applied repeatedly until the topology on the interface sur-
faces matches allowing the mesh to be merge into a single conforming mesh.
Figure 18a shows the final mesh with the final interface quadrilateral mesh
shown in Figure 18b. Table 1 shows the element counts and element quality
before and after mesh matching. As with any hexahedral mesh modification,
mesh matching introduces irregular nodes into the mesh topology which will
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Fig. 17. Localized sheet extraction during mesh matching: (a) The mesh in Volume
A with two sheets identified, the one to extract, and one that remains local to the
interface surface. (b) The column where the two indicated sheets intersect has been
collapsed, redirecting the sheet to extract to remain local to the interface region. (c)
After sheet extraction; all changes are local to interface surfaces.

tend to decrease element quality. In this case, the resulting mesh has a mini-
mum scaled Jacobian [13] of 0.5335, which is still well suited for analysis.

In the case that one side of the interface cannot be changed, the dicing,
pillowing, and sheet extraction operations are restricted to be performed only
where changes are allowed. For example if Surface A cannot be modified, all
unpaired chords in Surface B are removed through sheet extraction in Volume
B. Likewise, any unpaired chords in Surface A are inserted into Surface B
through sheet insertion in Volume B. Thus, Surface and Volume A remain
unchanged. If extraction of a sheet is required that would result in invalid
geometric associativity, this sheet can be redirected before the extraction using
a column collapse thus allowing it to be extracted.

Table 1. Element Quality Results for Simple Example Model

Number of Minimum Scaled
Elements Jacobian

Before Matching 5,925 0.7334
After Matching 6,024 0.5335

5.2 Industry Example

Figure 19a shows an I-beam structure used in a civil engineering application.
The critical component to be analyzed is the diagonal stiffener. In fact, as
part of the analysis, several different designs of the stiffener as well as adaptive
studies using different size elements will be used. The mesh on the rectangular
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Fig. 18. Final mesh after mesh matching: (a) Final conforming mesh on example
model after all topology on interface surfaces was matched. (b) The final mesh
topology on the interface surface.

I-beams has approximately one million hexahedral elements, and required
significant effort to generate. Ideally each time a new stiffener is introduced,
the existing mesh on the rectangular I-beam structure can be re-used rather
than requiring it to be re-meshed. The concepts of mesh matching presented in
this paper apply to this application since every time a new mesh is generated
for the stiffener, the mesh matching algorithm can be run on the connection
with the rectangular I-beam structure to create a conforming mesh.

Fig. 19. Industrial example: (a) An I-beam structure for a civil engineering appli-
cation. (b) Close look at interface between diagonal stiffener and corner I-Beams.
The meshes do not matches at the interface. This model provided courtesy of Tyler
Josephson and Professor Paul Richards from the Civil and Environmental Engineer-
ing Department at Brigham Young University.

Figure 19b shows a close up of the corner of the structure where the stiff-
ener connects to the corner plate. The stiffener is meshed with hexahedral
elements that are slightly smaller than that of the corner plate. As a result,
we have a nonconforming mesh. Figure 20a shows the interface surface on
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Fig. 20. Industrial example: (a) The mesh on the interface surface on the corner
plate. (b) The mesh after mesh matching. The mesh topology was matched and
merged into a single all-hexahedral mesh. The highlighted elements indicate the
sheets that were inserted during mesh matching.

Fig. 21. Industrial Example: (a) The same I-beam model before mesh matching,
this time stiffener is meshed at a much higher density. (b) After mesh matching.

Table 2. Element Quality Results for I-beam Model before and after mesh matching.

Number of Element Minimum Scaled
in Corner Plate Jacobian

Before Mesh Matching 4,611 0.6624
After Mesh Matching - course Stiffener 7,221 0.5872

After Mesh Matching - fine Stiffener 17,883 0.4924

the corner plate. It is meshed with 21×24 mapped quadrilateral mesh. The
interface surface on the stiffener is meshed with a 29×30 mapped quadrilat-
eral mesh. The mesh matching algorithm will need to increase the density of
elements in the corner plate so that it also has a 29×30 mapped quadrilateral
mesh so that the mesh on the interface can be merged. Figure 20b illustrates
the mesh after successfully creating a conforming mesh using mesh matching.

Figure 21a shows the same I-beam model, however, the stiffener has been
meshed at a much higher density of elements. The element size difference be-
tween the stiffener and the corner plate is 2.3 to 1. Rather than remeshing the
rectangular I-beam structure mesh matching is used to enforce a conforming
mesh across the interface. Figure 21b shows the mesh after mesh matching
has successfully matched the mesh topology on the interface creating a con-
forming all-hexahedral mesh through the interface. Table 2 shows the element
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count and element qualities before and after mesh matching. As with the first
example, although element quality is reduced some by mesh matching, the
resulting element qualities are still suitable for analysis.

6 Conclusion

A new computational method, called mesh matching, for making noncon-
forming hexahedral-to-hexahedral mesh interfaces conforming has been pre-
sented. Mesh matching modifies the mesh topology local to nonconforming
hexahedral-to-hexahedral interfaces to create a conforming mesh interface.
Mesh matching eliminates the need for artificial constraint conditions, such
as tied contacts, gap elements, and multi-point constraints. Mesh topology is
modified using the dual operators of column collapse, dicing, pillowing, and
sheet extraction, along with a new operator, sheet inflation.

Many meshing algorithms require entire assemblies to be meshed at once in
order to have conforming meshes between components [1, 2]. Mesh matching
relaxes this requirement by creating conforming meshes between assembly
components after each component is meshed individually. Further, Tautges
[22] indicates that hex meshing would be greatly simplified if global coupling
between assemblies could be reduced or eliminated. Mesh matching reduces
global coupling by enforcing a conforming mesh after the initial meshes have
been created. Thus, mesh matching has the potential to greatly simplify the
generation of conforming assembly hexahedral meshes.

Research on mesh matching continues with focus on the following areas.
First, mesh matching requires repeated dicing, pillowing, sheet extraction,
and sheet inflation. The example in Figure 21 required more than 50 pillow-
ing operations. Manually specifying 50 shrink sets is a tedious task that is
best automated. Second, mesh matching requires the interface be limited to
two topologically identical and spatially similar surfaces. In practice, interface
conditions often include multiple adjacent surfaces on each component. Com-
pared to a serial approach, simultaneous matching of all interface surfaces will
likely result in a more optimal mesh. Third, mesh matching theory depends
upon Assertion 1 in Section 4.2. Future research to prove this assertion will
guarantee the usefulness of mesh matching. The unproven elements of As-
sertion 1 involve guaranteeing that sheet inflation is always possible for any
possible hexahedral topology.
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